Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Evol ; 40(10)2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37738550

RESUMO

Molecular evolutionary rate variation is a key aspect of the evolution of many organisms that can be modeled using molecular clock models. For example, fixed local clocks revealed the role of episodic evolution in the emergence of SARS-CoV-2 variants of concern. Like all statistical models, however, the reliability of such inferences is contingent on an assessment of statistical evidence. We present a novel Bayesian phylogenetic approach for detecting episodic evolution. It consists of computing Bayes factors, as the ratio of posterior and prior odds of evolutionary rate increases, effectively quantifying support for the effect size. We conducted an extensive simulation study to illustrate the power of this method and benchmarked it to formal model comparison of a range of molecular clock models using (log) marginal likelihood estimation, and to inference under a random local clock model. Quantifying support for the effect size has higher sensitivity than formal model testing and is straight-forward to compute, because it only needs samples from the posterior and prior distribution. However, formal model testing has the advantage of accommodating a wide range molecular clock models. We also assessed the ability of an automated approach, known as the random local clock, where branches under episodic evolution may be detected without their a priori definition. In an empirical analysis of a data set of SARS-CoV-2 genomes, we find "very strong" evidence for episodic evolution. Our results provide guidelines and practical methods for Bayesian detection of episodic evolution, as well as avenues for further research into this phenomenon.

2.
Mol Biol Evol ; 39(2)2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35038741

RESUMO

The ongoing SARS-CoV-2 pandemic has seen an unprecedented amount of rapidly generated genome data. These data have revealed the emergence of lineages with mutations associated to transmissibility and antigenicity, known as variants of concern (VOCs). A striking aspect of VOCs is that many of them involve an unusually large number of defining mutations. Current phylogenetic estimates of the substitution rate of SARS-CoV-2 suggest that its genome accrues around two mutations per month. However, VOCs can have 15 or more defining mutations and it is hypothesized that they emerged over the course of a few months, implying that they must have evolved faster for a period of time. We analyzed genome sequence data from the GISAID database to assess whether the emergence of VOCs can be attributed to changes in the substitution rate of the virus and whether this pattern can be detected at a phylogenetic level using genome data. We fit a range of molecular clock models and assessed their statistical performance. Our analyses indicate that the emergence of VOCs is driven by an episodic increase in the substitution rate of around 4-fold the background phylogenetic rate estimate that may have lasted several weeks or months. These results underscore the importance of monitoring the molecular evolution of the virus as a means of understanding the circumstances under which VOCs may emerge.


Assuntos
COVID-19 , SARS-CoV-2 , Aceleração , Humanos , Mutação , Filogenia , Glicoproteína da Espícula de Coronavírus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...